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Abstract

Substructure-decoupling techniques are used to identify a substructure

as a stand-alone system while it is coupled to a complex structure (an as-

sembly of substructures). These recently introduced techniques can be

used for various applications, e.g., when the substructure cannot be mea-

sured separately from the complex structure, when modal testing meth-

ods are not appropriate due to the limits of the measurement equipment

and for vibration-control techniques. The complex structure consists of

the unknown substructure and the remaining structure. A drawback of

the available substructure-decoupling techniques is that they require a

model of the remaining substructure. However, when the model cannot

be calculated or (experimentally) identified, the substructure-decoupling

techniques cannot be used. In this article a new approach is presented
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that does not require a model of the remaining substructure, but is based

on an experimental identification of the interface forces. As an illustra-

tion, the subsystem identification is introduced on a generalized mass-

spring-damper system. To research the application possibilities for real

situations, complex structures with beam-like coupling elements are in-

vestigated. The sensitivity of the approach to experimental errors was re-

searched using an uncertainty propagation analysis. The article includes

numerical and experimental test cases.

Keywords: substructure decoupling, interface force identification, uncer-

tainty propagation

1 Introduction

Substructure techniques were developed to characterize complex structures that

are assembled from several substructures (parts) [1–3]. In the field of substructure-

coupling techniques each of the substructures can first be analyzed indepen-

dently of the others. Then, the obtained results are used to calculate the

dynamical behavior of the complete complex structure [1, 2]. Substructure-

coupling techniques can be used, e.g., to reduce the computational time in the

field of finite-element methods (FEMs) or to combine theoretically and experi-

mentally derived models [1]. In this research the inverse problem is considered,

where a substructure is identified as a stand-alone system while it is coupled to a

complex structure. These recently introduced methods are termed substructure-

decoupling techniques [4–7] and can be used to identify the substructure’s model

when it cannot be disassembled or it cannot be measured independently of the

complex structure, e.g., a fixture is needed for the testing [6]. Further, substruc-

ture techniques can be used in structural monitoring and vibration-control [6].

In the field of substructure-decoupling techniques the complex structure is

usually divided into the unknown and the remaining substructures. The re-

sult of the substructure-decoupling technique is a model of the unknown sub-

structure, which is identified from the complex structure. The substructure-

decoupling techniques can be classified as the inverse and the direct decoupling

techniques [8]. The inverse techniques are based on coupling equations, that

are rearranged in such a way that the model of the unknown substructure is

isolated [8]. Examples of the inverse techniques are the impedance [7,9,10] and

the mobility [4,7,10] substructure-decoupling techniques. The direct decoupling

techniques are based on the adding of a fictitious subsystem to the model of the

complex structure, that is the negative of the residual substructure [6, 8, 11].
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It is a common feature of all the available decoupling techniques that they

require a dynamical model of the complex and the remaining substructures. The

model of the complex structure is identified experimentally and the model of the

remaining substructure is calculated or experimentally identified. A drawback of

the substructure-decoupling techniques is that the calculation or identification

of the remaining substructure’s model requires an additional effort. When the

remaining substructure is too complicated to be calculated or experimentally

identified, the substructure-decoupling techniques cannot be used.

In this research a new approach to linear substructure decoupling is intro-

duced that does not require a model of the remaining substructure. This ap-

proach is based on measuring the interface forces [1]. The interface forces of the

complex structures usually cannot be measured directly; therefore, an identifi-

cation is made. In this article two types of dynamical systems are analyzed. As

an illustration, the proposed approach is considered on a mass-spring-damper

system. To show the application possibilities of the proposed approach for real

structures, this research considers complex structures with beam-like coupling

elements, i.e., structures where there is a beam in the region of the coupling

degrees of freedom (many real structures contain beam-like components in their

assembly). The research includes an uncertainty propagation analysis of the

proposed approach. This approach was also validated by numerical simulations

and experimental tests.

The article is organized as follows: Section 2 introduces the responses of

the complex structure and substructures. Section 3 describes the approach to

substructure decoupling. This is followed by the theory of error analysis in

Section 4. The case studies are presented in Sections 5 and 6. The conclusion

follows in Section 7.

2 The responses of the complex structure and

the coupled substructures

The substructure decoupling will be considered for the complex structure AB

(Fig. 1a) that is assembled from the substructures A and B. It is assumed that

the considered systems are linear and time invariant. In this article all the

quantities are functions of frequency, except for the constants and integers. The

subscripts a, b and c correspond to the substructures A, B and the coupling

degrees of freedom (DOF), respectively. The structure AB is excited with the

external excitation forces fa and fb (Fig. 1a). The response for the structure

3



AB is defined as [1, 5, 12]:
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where ua and ub are the responses that correspond to the internal DOF

of the substructures A and B, respectively. uc is the response of the coupling

DOF. HAB is the frequency-response-function (FRF) matrix of the complex

structure AB (without the elements that correspond to the coupling DOF).

Using the interface forces fAc (Fig. 1b) the response of the coupled substructure

A (Fig. 1b) can be written as [5]:

A B

b)

A B

a)

Fig. 1: a) The complex structure AB; b) The coupled substructures A and B
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where HA is the FRF matrix of the substructure A. Using the interface

forces fBc the response of the coupled substructure B can be written as [5]:

[

uB
c

ub

]

=

[

HB
cc HB

cb

HB
bc HB

bb

]

︸ ︷︷ ︸

HB

[

fBc
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(3)

where HB is the FRF matrix of the substructure B.

When the substructures A and B are assembled, the compatibility and equi-

librium conditions are satisfied for the coupling DOF. The compatibility of the

displacements is written as [1, 4, 5]:
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uc = uA
c = uB

c (4)

and the force equilibrium between the substructures A and B is written

as [1, 4, 5]:

f
A
c + f

B
c = 0 (5)

3 The substructure-decoupling procedure

This article introduces a linear substructure-decoupling technique to identify the

substructure B as a stand-alone structure while it is coupled to the structure

AB (Fig. 1b). The proposed approach is based on the decoupling technique

presented by Sjövall and Abrahamsson [4] and further developed by Voormeeren

and Rixen [5]. This technique requires a response model A for the interface force

identification. With the proposed technique the interface forces fBc are identified

experimentally, where the mathematical model of the substructure A is not

needed. This section briefly describes the general procedure for the proposed

substructure decoupling. More details are given in the following sections. The

technique is schematically shown in Fig. 2. At the ith linearly-independent

excitation step the structure AB is excited with the external forces ifa and

ifb (Section 3.1). In this research the linear independence of the excitation

forces is achieved by changing the number, location and magnitudes of the

excitation forces. At each excitation step the responses iub, iuc are measured

(Section 3.1) and the interface forces if
B
c are identified (Section 3.2). After m

excitation steps (m is defined in Section 3.3) the measured (identified) quantities

are used to identify the substructure-B response model with the approach that

is introduced in Section 3.3.

3.1 The structure excitations and response measurements

Under laboratory conditions the testing process can be controlled by exciting

the structure in a similar way as in the experimental modal analysis (EMA) [1,

2, 12, 13] with a modal hammer or an electrodynamic shaker. The responses

can be measured with a motion sensor (e.g., a piezoelectric accelerometer or a

laser vibrometer). For numerical simulations the responses are calculated using

Eq. (1).
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Identification of

i-th excitation step

i=1

- Exciting the complex structure by external
forces    and    .

- Measuring of responses      and     .
- Identification of the interface forces    .

A B

Fig. 2: The substructure-decoupling technique

3.2 The identification of the interface forces

The interface forces usually cannot be measured directly; therefore, an indirect

approach has to be used. The interface force identification approaches that

were presented by [4, 5] are based on Eq. (2) and (5). First, fAc is calculated

from Eq. (2), which requires the FRF matrix of the substructure A. Then, fBc
is calculated using Eq. (5).

In this section the interface force identification is presented that is based on

the response measurements only. It does not require the FRF matrix of the

substructure A. The approach will be considered on two types of substructure

coupling elements (the region around the coupling DOF), i.e., the springs (Fig.

3) and a beam (Fig. 4).

3.2.1 Spring element

When the coupling elements between the subsystems A and B are springs

(Fig. 3), the interface force f j,B
c , corresponding to the jth spring, is linearly

dependent on the spring extension djc. The interface forces are written in vector

form as:
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f
B
c = −

[
rKr

]
dc (6)

where [rKr] is the (diagonal) matrix of the spring’s stiffness kj and dc is a

vector of djc. Using the FRF matrix of the system AB the interface forces are

calculated with the following equation:

fBc = −
[
rKr

] [

HAB
cba −HAB

caa HAB
cbca −HAB

caca HAB
cbcb −HAB

cacb HAB
cbb −HAB

cab

]


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
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f ca

f cb
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






(7)

where f ca and f cb are external forces that excite the system AB at the

points ca and cb, respectively. HAB
cba are FRFs between points cjb (see Fig. 3)

and internal DOF of the subsystem A. HAB
caa, H

AB
cbca

, HAB
caca , H

AB
cbcb

, HAB
cacb

, HAB
cbb

,

HAB
cab are defined in a similar way as HAB

cba.

..
.

A B

spring coupling
element

..
.

Fig. 3: The spring coupling elements

3.2.2 Beam elements

When the coupling element between the substructures A and B is a beam (Fig. 4)

the interface forces are normal (Nx,c) and the shear forces (Ty,c, Tz,c), bend-

ing (My,c, Mz,c) and torsion (Mx,c) moments. However, it is assumed in this

research that the coupling element is a uniform Euler-Bernoulli beam in pure

planar bending in the plane xz; therefore, only the bending moments My,c and

the shear forces Tz,c are analyzed [14]. A vector of the interface forces f
B
c for

the coupling DOF c (Fig. 4) is written as:

fBc = [−Tz,c −My,c]
T (8)
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A B

beam coupling
element

c

neutral axis

Fig. 4: The complex structure with the beam coupling element

In this section a procedure for the identification of the interface forces fBc is

presented. The bending moments My result in the normal stress σxx. σxx varies

linearly with the distance ez from the neutral axis (see Fig. 4 and 8), where the

normal stress and strain equal zero [15]. The normal stress at the surface is

written as [15, 16]:

σxx,s =
My

Iy
ez, (9)

where Iy is the area moment of inertia around the y-axis and ez (Fig. 4)

is the distance between the neutral axis [15] and the surface. By considering

Hooke’s law, the relationship between the bending moment and the strain εxx,s

at the surface can be written as:

My = E εxx,s
Iy

ez
(10)

where E is the Young’s modulus. The shear force Tz is the first partial

derivative of the bending moment with respect to x [14]:

Tz =
∂My

∂x
(11)

Eq. (11) can be written in terms of the central difference formula for the

first derivative [17]:

Tz(x) =
1

2 h
(My(x + h)−My(x− h))−

h2

6

∂3My(ξ)

∂x3
; h 6= 0 (12)

where x− h and x+ h are the nodes that are symmetrically located around

x with the spacing 2 h. h2

6
∂3My(ξ)

∂x3 is the truncation error of order O(h2), where
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x− h < ξ < x + h. To ensure the small truncation error the spacing 2 h has to

be sufficiently small.

In this research the identification of the bending moment My,c and the shear

force Tz,c is based on measuring the strain responses (with piezoelectric strain

gauges [18,19]) at two structure points, which are located symmetrically around

the coupling DOF (see Fig. 4 and 5) with the spacing s. When Iy is constant,

Tz,c can be identified with the following equation:

Tz,c ≈
My,cb −My,ca

s
(13)

which is based on Eq. (12). My,ca and My,cb are bending moments, corre-

sponding to the points ca and cb, respectively (Fig. 5). My,ca and My,cb are

calculated with Eq. (10). When the strain responses are measured at the points

ca and cb, the bending moment at the point c can be obtained by calculating

the average value:

My,c ≈
My,ca +My,cb

2
(14)

strain gauge

Fig. 5: The strain gauges for the interface force identification

Using the strain FRF matrix [18, 20, 21] of the structure AB the bending

moment My,c (Eq. (14)) can be calculated with the following equation:

My,c =
1

2

Iy

ez
E
[

HAB,εxx

caa +HAB,εxx

cba H
AB,εxx

cab
+H

AB,εxx

cbb

]
[

fa

fb

]

(15)

where HAB,εxx is the strain FRF matrix of the complex structure. An ele-

ment of HAB,εxx can be written as:

H
AB,εxx

jk =
εxx, k

Fj

(16)

where εxx, k is the normal strain in the x-direction and Fj is the excitation

force. The shear force (13) can be written in a similar way as Eq. (15):

9



Tz,c =
Iy

ez s
E

[

HAB,εxx

cba −HAB,εxx

caa H
AB,εxx

cbb
−H

AB,εxx

cab

]
[

fa

fb

]

(17)

Eq. (15) and (17) can be used for numerical simulations. The derivations for

Mz,c and Ty,c can be performed in a similar way as forMy,c and Tz,c, respectively

(Fig. 5). When the substructures are coupled with several beams (e.g., a steel

tower) the same procedure can be used for each coupling beam. When the

interface forces are dominated by the torsional moments, the identification of

bending moments and shear forces is not sufficient for accurate substructure

identification.

3.3 The Identification of the substructure’s FRF matrix

The coupled substructure B (Fig. 1b) can be considered as a stand-alone system

that is manipulated with the excitation force fB (see Eq. (3)):

fB =

[

fBc

fb

]

nF

(18)

where nF is the number of excitation forces corresponding to the coupled

substructure B. The excitation forces that excite the coupled substructure B,

corresponding to the m linearly independent load steps can be collected in the

matrix FB:

FB =
[

1f
B · · · if

B · · · mfB
]

nF×m
(19)

The responses of the structure B that correspond to the m linearly indepen-

dent load steps can be written as:

UB =

[

1uc · · · iuc · · · muc

1ub · · · iub · · · mub

]

nU×m

(20)

where nU is the number of responses. For the theoretical analysis the re-

sponse and excitation points correspond to the DOFs of the substructure B;

therefore, nU and nF are equal to the number of substructure B DOFs nB. The

relation between UB and FB can be written as [4, 5]:

UB = HBFB (21)

where HB is the FRF matrix of the subsystem B (as a stand-alone struc-

ture). Eq. (21) is determined or over-determined when the number of linearly
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independent excitation steps m is equal to or higher than nB (m ≥ nB) [4,5,22].

When Eq. (21) is over-determined HB can be solved using the least-squares

solution of Eq. (21) [4, 5]:

HB = UBFB+ (22)

where + denotes the generalized inverse of the matrix. When m equals nB

the matrices UB and FB become square and the regular matrix inversion can be

made. In practice, where the real structures are tested, the number of response

points and excitation points (corresponding to the substructure B) is usually

not the same. In this case Eq. (21) is determined or over-determined when

m ≥ nF.

4 The analysis of the errors

The proposed approach is based on measurements that are contaminated with

errors. The measurement errors propagate in the process and lead to errors

in the final results. The errors have two components, i.e., systematic and ran-

dom [23,24]. The systematic errors are due to the systematic effects that can be

reduced by corrections when the effects are recognized and quantified [23, 24].

In this research some of the potential systematic errors were analyzed for the

interface force identification (Section 6.1). The random errors can usually be

evaluated through a statistical analysis. They are usually referred to as mea-

surement noise [5, 25]. The most usual sources of measurement noise are the

random influences from the measurement environment and the round-off er-

rors in the A/D conversion [5, 25]. The effects of the random errors cannot be

eliminated, but they can usually be reduced by increasing the number of ob-

servations. In general, however, the true value of a measured quantity cannot

be obtained exactly. The lack of knowledge about this true value is called the

uncertainty [23, 24]. In this research the uncertainty will be evaluated by sta-

tistical means. In practice it is convenient for the spread of data points around

the mean values to be expressed with the standard deviation [5, 25]. When the

final result is the function of several input quantities, the uncertainty of the final

results depends on the uncertainty of all the inputs. When the input quantities

are independent (uncorrelated), the uncertainty in the result can be calculated

with the following equation [5, 25]:
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σ(g(x)) =

√
√
√
√

ng∑

i=1

(
∂g

∂xi

σ(xi)

)2

(23)

where σ(g(x)) is the standard deviation of the function g(x), and x is a

vector of the ng input quantities xi. σ(xi) is the standard deviation of xi.

Equation (23) is based on a linear assumption.

5 Case study 1

To illustrate the proposed approach the numerical simulations were made on a

mass-spring-damper system (see Fig. 6). The system is assembled from the sub-

systems A and B, which are connected with two springs (k4 and k5). The mass

and stiffness parameters are listed in Table 1. The system is lightly damped.

The proportional-viscous-damping model was assumed, where the damping ma-

trix was proportional to the mass (α = 10−5) and stiffness (β = 10−7) matrices.

m7
k7

m6

m5

m8m2

k6

k5

m4

m3

k4

k3

k2

x2 x3 x5 x7 x8

x4 x6

m1

x1

Subsystem BSubsystem A

Fig. 6: The lumped dynamical system

Table 1: The mass and stiffness parameters

i 1 2 3 4 5 6 7 8

mi[kg] 1.0 2.0 3.0 2.0 4.0 1.0 2.0 1.0

ki[Nm−1] 107 107 2× 107 107 2× 107 107 2× 107 2× 107

The FRF matrix of the substructure B was identified with the procedure

that was presented in Section 3. In the case 1 the calculation was made with

the complete FRF matrices (no reduction was done). The responses of the sys-

tem AB were calculated from the response model HAB. To ensure that Eq. (21)

is over-determined, five linearly independent excitation steps were made, where
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Table 2: Force values at excitation steps

i if1 if2 if3 if4 if5 if6 if7 if8

1 1 0 1 0 0 0 0 0

2 0 1 0 4 1 3 0 0

3 0 0 1 2 1 5 1 1

4 0 5 0 0 1 3 0 0

5 0 2 0 1 1 0 2 1

the structure was excited at the points 1-8. For each excitation step the excita-

tion vector was built where the real constant values were chosen for the whole

frequency range. The values of the excitation vectors are shown in Table 2.

The interface forces were identified using Eq. (6) and the FRFs of the subsys-

tem B were identified with Eq. (22). The result of the analysis is the complete

FRF matrix of the subsystem B. The results (FRFs) are plotted as acceler-

ances [1] with a frequency resolution of 2.6 Hz. Fig. 7 shows the identified

accelerance of the subsystem B between the points 8 and 6 (ÂB
86), the true ac-

celerance (AB
86) and the accelerance of the structure AB, denoted as AAB

86 . The

identified accelerance ÂB
86 matches the true one AB

86. The comparison of AB
86 and

AAB
86 shows that when the subsystem B is uncoupled, its dynamical properties

are significantly changed.

0 200 400 600 800 1000 1200

Frequency [Hz]

10−5

10−4

10
−3

10−2

10
−1

10
0

101

10
2

103

M
a
g
n
it
u
d
e
[

m
s−

2
N

−
1
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Fig. 7: The accelerance of the subsystem B (AB
86): Identified (black - - -), True

(grey —); The accelerance of the system AB (AAB
86 ): (black —)
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6 Case study 2

To validate the proposed approach on a continuous structure the experiment

(numerical and real) was conducted on a steel, 1-m-long, free-free supported

beam with a rectangular, 0.01×0.03 m2 cross-section (Fig. 8). Only the bending

modes in the plane xz are considered, which result in displacements in the z-

direction and normal strains in the x-direction [14]. The beam is considered as

a structure AB, which is assembled from the substructures A and B (see Fig. 8).

The case study 2 includes the numerical simulations and the experimental tests.

Direction of
vibrating

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

0.01 m

0.
03

 m

A BStrain gauge

neutral
axis z

Fig. 8: The tested beam

6.1 Numerical simulations

In this section the substructure decoupling is based on the quantities (with

the frequency resolution of 1 Hz) that are calculated using (FEM) harmonic

analysis. The proportional hysteretic damping model was assumed with the

constant damping loss factor η = 8× 10−4.

6.1.1 The substructure identification with the pure data

The numerical simulations were made with the same quantities (motion and

strain responses) as for the experimental test (Section 6.2). The structure AB

was excited at the points 1 and 3 with the excitation forces. To obtain the

interface forces between the substructures A and B the shear forces (Tz, c) and

the bending moments (My, c) were calculated at the point c. The responses were

calculated at the point 11. These quantities are used for the identification of the
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substructure B. The sizes of the excitation (a column of FB) and the response

vector (a column of UB) are two (nF = 2) and one (nU = 1), respectively (see

Eq. (19) and (20)). To ensure that Eq. (21) is determined, two excitation steps

are required. The structure excitation was made as follows: In the first and

second steps the structure was excited with the unit force (a constant value

over the whole frequency range) at the points 1 and 2, respectively. The results

of the substructure decoupling are the FRFs of the substructure B as a stand-

alone dynamical system. The input data enable the identification of the motion

(translational) and moment (rotational) FRFs between the response point 11

and the excitation point c. Fig. 9 shows the accelerance of the substructure

B between the response point 11 and the excitation point c (ÂB
11 c) that was

identified using the proposed approach, the true accelerance of the substructure

B (AB
11 c) and the accelerance corresponding to the structure AB (AAB

11 c). The

identified accelerance ÂB
11 c matches the true accelerance AB

11 c.
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Fig. 9: The accelerances of substructure B (AB
11 c): Identified (black - - -), True

(grey —); The accelerance of the structure AB (AAB
11 c): (black —)

6.1.2 Analysis of the systematic errors

In Section 6.2 (real experiment) the bending moments and shear forces of the

real beam are identified using the procedure that was presented in Section 3.2.2.

To test the sensitivity of the final results to potential systematic errors the

analysis of the spacing between the strain gauges (Section 3.2.2) and analysis
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of the incorrect sensitivity (due to inappropriate attaching) of the strain gauge

was made.

As can be seen from Section 3.2.2 the spacing between the strain gauges is

important for the accuracy of the interface force identification and the results of

the substructure decoupling. To analyze the influence of the spacing s (Eqs. (14)

and (13)) a series of decoupling procedures was made where s varied from 20 mm

to 60 mm. The accelerances of the decoupled substructure B ÂB
11 c that are based

on the 20-mm and 60-mm spacings are shown in Fig. 10 together with the true

accelerance AB
11 c. While the relatively large spacings (s = 60 mm) result in the

frequency shifts and magnitude variations, the 20-mm spacing does not have a

significant effect on the final results.
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Fig. 10: The identified accelerance of the substructure B (ÂB
11 c): The spacing

s = 60 mm (black —), s = 20 mm (black - - -); and the true AB
11 c (grey —)

If the strain gauges are not attached in accordance with the producer’s in-

structions the sensitivity of the strain gauge is changed [19,20]. To analyze this

effect, a simulation was made, where the sensitivity of the sensor at the point cb

was reduced by 20 %. Due to the reduced strain gauge-sensitivity the identified

FRF increased by a factor that was (approximately) constant over the whole

frequency range. The 20 %-sensitivity reduction resulted in a less than 13 % in-

crease in the identified accelerance and moment accelerance of the substructure

B.
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6.1.3 The uncertainty propagation analysis of the decoupling tech-

nique

The goal of the uncertainty propagation analysis is to research how the un-

certainties of the input quantities affect the final result HB. The uncertainty

propagation analysis was made with Monte Carlo simulations. It is assumed

that the uncertainties of the input quantities are specified in terms of confi-

dence intervals at the 95 % level (95 % of the generated input quantities were

inside the confidence intervals). The confidence intervals of the input quanti-

ties FB and UB were proportional to the magnitudes with the factor 0.1 %. A

total of 1000 simulations were made. For every Monte Carlo simulation a ran-

dom input quantity was generated for every frequency point. The distribution

of the simulated input quantities is Gaussian. The confidence intervals of the

calculated substructure’s FRF magnitudes (the results of Monte Carlo simula-

tions) were defined at the 95 % level (95 % of the calculated data was inside the

confidence intervals).

The convergence check of the Monte Carlo simulations was made by plotting

the mean values and standard deviations of the calculated FRFs magnitudes

against the number of simulations. As an example, the convergence check is

shown for simulated accelerances ÃB
11c at the frequency 851 Hz in Fig. 11. Fig. 11

shows, that the number of simulations is sufficient to achieve the convergence.
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Fig. 11: Magnitude of accelerance ÃB
11c at the frequency 851 Hz: a) Mean values

(—) and true value (– –) ; b) Standard deviations
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The results of the analysis are shown as the mean accelerance of the sub-

structure B (between the structure points 11 and c) together with the confidence

intervals in Fig. 12 and as the ratio between the confidence interval and the mean

accelerance in Fig. 13. Fig. 12 and Fig. 13 show that the uncertainties are mag-

nified significantly around the resonance peaks of the substructure B and the

structure AB. The numerically calculated natural frequencies of the complex

structure occur at 53 Hz, 145 Hz, 285 Hz, 471 Hz, 703 Hz, 982 Hz and 1306 Hz.

The numerically calculated natural frequencies of the substructure B occur at

94 Hz, 259 Hz, 507 Hz, 838 Hz and 1252 Hz. The analysis of the simulation

results also showed that the magnitude distribution of a substructure’s B FRF

at a single frequency point is not Gaussian over the whole frequency range. The

distribution is not normal at the points where the uncertainties are propagated

the most. At these points the mean value of the substructure’s FRF magnitude

does not match the true values. These facts indicate nonlinear effects; therefore,

the calculated confidence intervals at these frequency points are not reliable.

The results of the uncertainty propagation analysis show that significant

errors can occur around the natural frequencies of the structure AB and the

spurious peaks around the natural frequencies of the substructure B.
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Fig. 12: The accelerance of the substructure B ÂB
11 c: Identified (black), identi-

fied with the confidence intervals (grey)

18



0 200 400 600 800 1000 1200 1400

Frequency [Hz]

0.0

0.5

1.0

1.5

2.0

2.5

ra
ti
o

Fig. 13: Ratio between the confidence interval and mean accelerance (ÂB
11 c)
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6.2 Experimental testing

This section introduces the results of the experimental testing on the real

beam (Fig. 14). The free-free boundary conditions of the beam were achieved

by suspending the structure from thin ropes. During the experimental test-

ing the structure was excited with a modal hammer (B&K Type 8206-002).

The strain responses were measured with two piezoelectric strain gauges (PCB

740B02 [19]), which were attached symmetrically around the point c. The at-

taching of the the strain gauges is shown in Fig. 8 and 14. In accordance with the

error analysis of the strain-gauges spacing in Section 6.1.2, the spacing 20 mm

was chosen. The motion responses were measured at point 11 with the piezo-

electric accelerometer (B&K Type 4517-002). The identification of the shear

forces (Tz,c) and the bending moments (My,c) was made with Eqs. (13) and

(14), respectively. To compare the identified interface forces with the calculated

ones using the validated finite-element (FE) model the results are plotted as the

FRFs between the shear force (bending moment) and the external excitation

force. Fig. 15 shows the FRF between Tz,c and the excitation point 1. FRF be-

tween My,c and excitation point 1 is shown in Fig. 16. The frequency resolution

of the quantities that are plotted in this section is 0.1 Hz. Fig. 15 and 16 show

that the identified interface forces match the calculated ones well.

accelerometer

strain gauge

substructure A substructure B

Detail C:

C

acquisition
hardware

modal
hammer

1. 2. 5. 6. 10. 11.7. 8. 9.3. 4.

Fig. 14: The experimental testing
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Table 3: The natural frequencies of the tested beam

r ωr direction

1 52.7 Hz z axis

2 144.6 Hz z axis

3 157.6 Hz y axis

4 282.9 Hz z axis

5 428.9 Hz y axis

6 467.5 Hz z axis

7 697.7 Hz z axis

8 833.3 Hz y axis

9 928.9 Hz torsional

10 972.2 Hz z axis

11 1292.6 Hz z axis

12 1363.3 Hz y axis

In this experiment the size of the excitation vector (nF = 2) and the re-

sponse vector (nU = 1) is the same as for the numerical testing (Section 6.1).

The linearly independent excitation steps were made in the same way as for the

numerical simulations. The measured responses, (identified) shear forces and

bending moments were used to identify the substructure B FRFs. The iden-

tified accelerance ÂB
11 c (between the points 11 and c) is plotted together with

the measured one (Fig. 17), where the free-free supported beam with the length

L=750 mm was tested. The identified moment accelerance Â
M,B
11 c is plotted to-

gether with the calculated one (from the validated FE model) in Fig. 18. Fig. 17

and 18 show that the experimental results match the calculated ones well. The

main reasons for the discrepancies are the consequences of the measuring errors.

Some of the discrepancies were predicted with the uncertainty propagation anal-

ysis (Section 6.1.3) i.e., the relatively high discrepancies around the resonance

peaks of the substructure B (e.g., 144.6 Hz, 282.9 Hz,1292.6 Hz). The spurious

peaks around 157.6 Hz, 428.9 Hz and the discrepancy around 833.3 Hz occur

at the natural frequencies of the beam’s (structure AB) mode shapes in the

y-direction, due to the transverse sensitivity of the sensors. The discrepancies

around 928.9 Hz occur due to cross-axis sensitivity of the strain sensors to the

shear strains at the torsional mode shape. The natural frequencies of the real

beam are evident from Table 3 and were identified from the accelerances that

were measured in the directions z and y (Fig. 14). The results of the experi-

mental testing show the validity of the proposed approach.
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Fig. 15: The FRF between the shear force and the excitation force: Identified

(grey —) and calculated (black - - -).
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Fig. 16: The FRF between the bending moment and the excitation force: iden-

tified (grey —) and calculated (black - - -).
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Fig. 17: The accelerance of the substructure B (AB
11 c): Identified (grey —) and

measured for the 0.75-m-long beam (black - - -)

0 200 400 600 800 1000 1200 1400

Frequency [Hz]

100

10
1

102

10
3

104

105

10
6

M
a
g
n
it
u
d
e
[

m
s−

2
N

−
1
m

−
1
]

Fig. 18: The moment accelerance of the substructure B (AM,B
c 11 ): identified (grey

—) and calculated (black - - -)

23



7 Conclusion

This research is focused on substructure-decoupling techniques. The result of

substructure-decoupling techniques are the FRFs of the unknown substructure

as a stand-alone structure (the complex structure is divided into the unknown

and the remaining substructure). A drawback of the current substructure de-

coupling techniques is that the response model of the remaining substructure is

required. In this article a new approach is introduced that does not require the

response model of the remaining substructure. The proposed approach is based

on an experimental identification of the interface forces. The interface force

identification was considered on systems with spring- and beam-like coupling

elements. The first type of systems were considered for an illustration of the

proposed approach and the second to show the practical applications for real

structures (many real structures are assembled from beam-like structures). The

identified interface forces, measured responses and the excitation forces can be

used for the identification of the substructure FRFs.

The proposed approach was validated on a mass-spring-damper system and

a beam structure. The numerical simulations on the mass-spring-damper sys-

tem showed that the identified FRFs of the subsystem match the true FRFs.

The beam tests included numerical simulations and experimental testing. The

results of the numerical simulations showed that the identified FRFs of the sub-

structure match the true ones well. The numerical simulations also included

the systematic- and random-error analysis. The error analysis on the beam

case showed that the relatively small random error is significantly magnified in

the FRFs of the substructure. However, the analysis of the spacing between

the strain gauges and the analysis of the strain gauge’s sensitivity change (due

to inappropriate mounting) showed that these system errors do not affect the

substructure’s FRFs significantly. The experimental testing showed that the

identified accelerances and moment accelerances correspond to the calculated

values.
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